
CS 115 A First Look at Python

Taken from notes by Dr. Neil Moore

Getting Python and WingIDE
Instructions for installing Python and WingIDE 101
are on the web page:
http://www.cs.uky.edu/~keen/help/installingpython.html

We’ll use WingIDE today.

Hint: use a big font (18 or 20 point) for labs! It is
easier both for us and for your teammates to read
it! The simplest way is Control + plus to make
bigger.

http://www.cs.uky.edu/%7Ekeen/help/installingpython.html

Structure of a Python program
• def main():

– This is the first line of the “main function” where the
program does all its work

• For now
– More about functions in a few weeks
– Python does not need a main function, but use on in all

code in this class!
• It’s good practice for later.

• Indentation and blocks
– Code is arranged in indented blocks.
– The body of the main function is one block.
– It can have several blocks inside it.

Structure of a Python program

• The last line in the file is main()
– This is the call to the main function.
– It is not inside the main function!

• The line (the call) is not indented at all!

– If you forget this line, the program does nothing
when run!

Documentation (Comments)
• Syntax: Comments in Python start with a # character and

extend to the end of the line.
– A variant of a comment starts and ends with 3 single quotes.

This version can include multiple lines, even paragraphs or
pages.

• Semantics: Does nothing: ignored by the Python interpreter
entirely.

• Why would we want to ignore any code?
• Comments are for humans, not the computer.

– Your teammates
– Your boss (or instructor or grader …)

• You can communicate with your grader while they are grading!
– Yourself next week! Or next month!

Where to use comments
• Comments don’t usually need to say how you are doing

something or what you are doing.
– That is what the code is for. Don’t repeat the code in the

comments
• Instead, they should say why something is done.

– BAD: counter = 0 # set counter to zero
– GOOD: counter = 0 # initialize number of lines

• If the comment is long, put it on a line of its own
before the code statement.
– That way you don’t have to scroll horizontally to read it all.

• In general, try to keep code lines less than 80 characters.
• Less than that on team labs, where you are using a big font.

Where to use comments

• Not every line of code needs its own comment
• A block of code can be summarized by one

comment
• Every control structure (loops, if statements)

deserves a comment
• Any “tricky” code deserves a comment

Header Comments
– Name, email, section number
– Purpose of the program
– Preconditions: inputs to the program

• And what the program assumes is true about the inputs
– Postconditions: outputs of the program

• And what you can guarantee about the outputs
– Reference(s) or Citations when you received or gave

assistance
• TA Name and email
• Tutor Name and email
• Partner’s name and email and section
• URL and date you read the page

Kinds of Errors
Here’s a simple program – it has several errors.
Def main():

x = int(input(“enter a number “))
x = x + 1 # x should be increased

by 10
print(x)

Main()
– Syntax errors
– Semantic (logic) errors
– Run-time errors

Syntax errors
• Syntax is the set of rules that say how to write

statements in the language
– Misspelling, incorrect punctuation, words in the

wrong order, etc. are syntax errors
– Humans can probably figure out what you meant

when you have syntax errors in English (e.g., text
messages – misspellings, missing words, no
punctuation, etc. but we can still understand them)

– Programming languages are very rigid about syntax
rules – if one exists, the interpreting stops!

– For computers, getting the meaning if the syntax is
wrong is nearly impossible!

Syntax errors

• The interpreter will give you an error message for
the first syntax error.
– Translator programs are NOT “smart” . Their

indication of where they think the error is is not
always right.

– If they say it’s in line 10, make sure to look in line 9 or
8 or 7 …

– Don’t bother to look after the line they indicate (like
line 11 or 12…).

– If there are comments between lines, skip those and
look above them.

Semantic errors

• Also known as logic errors
• Semantics = meaning

– The semantics of a program is what does it make the
computer do when it is executed: what changes does
it make in memory, what does it output…

• A semantics error is usually the program not
doing what you want it to do
– It always does what you tell it to!
– Maybe you multiplied instead of dividing
– Or you used the wrong variable or constant

Semantic errors

• The interpreter won’t detect these for you!
• So how do we find them?

– Testing!
– Making a test plan: what to test, provided input,

expected output.
– Coming up with a good set of test cases is one of

the important parts of programming
– By writing up test cases, you have to dig in and

understand the desired behavior of the program

Run-time errors
• These occur when the program or interpreter encounters a situation it

can’t handle
– Usually causes the program to halt with an error message, it “crashes”
– It’s not detected until the situation actually happens!

• Often caused by the environment (operating system):
– A file is not found
– Network connection closed
– A storage device runs out of room

• Sometimes they are caused by programming errors:
– Using a string where a number was expected
– Using an undefined variable
– Dividing by zero

• Some languages allow for catching and handling these errors by using
exception handling (We’ll do a bit at the end of the semester)

Run-time errors

• For the present time, we will not worry about the
errors caused by the environment

• If your program needs a positive number to
operate correctly and the user inputs something
else, right now it is alright for the program to
crash

• Your documentation should state the
expectations of the program

• As you learn more of the language, you will learn
how to catch these errors in friendlier ways

Fixing bugs

• Let’s fix the bugs in our program
– Syntax error: misspelled keyword
– Syntax error: name ‘Main’ not defined
– Semantic error: wrong constant for adding to x
– Run-time error: input is a string, not a number

Variables

• A variable is a “slot” or “holder” or “location”
that refers to a value
– a and b were variables in our program
– A value is something like 42 or “Hello”
– Variables are stored in RAM
– They can refer to different values as the program runs

(they are “able to vary”)
• Assignment (the equals sign) makes a variable refer to a new

value
– A variable is a fundamental building block of most

programming languages.

Properties of a variable
• It has a name – one that means something

– Also called an “identifier”
• It has a value – what value is in the variable

– In Python, the value of a variable is an object.
• It has a type – what kind of value

– Integer, string, floating-point number, boolean, …
• It has a scope – where in the program is the name valid

or accessible?
– In Python, scope goes from the definition of the variable to

the end of the block that the definition is in.
– Can have variables with the same name as long as their

scopes don’t overlap. They’re entirely unrelated variables!

Rules for Identifiers

• An identifier is a sequence of letters, digits
and underscores (_) used as a label
– “Alphanumeric” characters (“A..Za..z0..9”)
– Case sensitive: students and Students and

STUDENTS are all different labels in Python
– It cannot start with a digit (Python thinks that it is

a number, although a badly formatted number)
– Cannot be a reserved word (if, while, else, etc.)

• These are usually dark blue in WingIDE.

Rules for Identifiers

• Valid examples: x, size, name2, long_name,
CamelCase, _ugly (can start with an underscore)

• BAD: 2bad4u, no spaces, no-punctuation!
• Just because it’s legal doesn’t mean it’s a good

name.
– Avoid single-letter variables

• Except in loop counters or simple math equations
– And names like “thing” and “number” aren’t any

better – they don’t say what they mean
– Better names are “lineCounter” or “num_students”

The Assignment operator
• Syntax: variable = expression

– Must be a single variable on the left (for now)
• Semantics: Calculates the value of (evaluates) the right hand

side (RHS) then uses that value to change (replace) the value
of the variable on the left hand side (LHS).

• This statement is not the same thing as an equation in math!
– In math, x = x + 1 has no sensible solution
– But in Python, x = x + 1 means “add 1 to x”.
– Instead of “equals”, it’s better to read it as “gets” or …
– “Assign x + 1 to x” or “Assign x with x + 1”.

• Although it looks trivial, it is where much of the processing of
the program takes place! It is the most used statement to
manipulate items in memory.

The Assignment operator
• Order in the statement matters!

– The two steps are always done in the same order
– First evaluate the right hand side
– Then change only the variable on the left hand side
– x + 1 = x # Syntax Error!

• If the LHS variable doesn’t already exist in this scope, it
is created.
– “Initialization”: give a variable its initial value

• Rule of Thumb: a variable has to appear on the left
hand side of an assignment before it appears on the
right hand side (not 100% true but very nearly)

Example of assignment: swapping
Suppose we have two variables and want to swap their
values. This means that each variable’s new value is the
other variable’s old value.
• The code should look something like this:

x = 10
y = 42
do something
print(x, y) # should print 42 10

• Will this work?
x = y
y = x
print(x, y)

• No! it prints out 42 42 We lost the old value of x!

Two Solutions to swapping

• This one works in any language
– You need a third variable (temp)

temp = x
x = y
y = temp

• This one works only in Python but it’s cute!
x, y = y, x

It works by making “implicit tuples” on each side
and assigning corresponding values to variables on
the left hand side.

Can variable properties change?
• The name and scope of a variable never change.

– If you think it did, it’s actually a different variable
• In a “dynamically typed” language like Python, the value and type of

a variable can change
– With assignment statements: (first a float, then a string)

score = 0.0
score = “incomplete”

• In a “statically typed” language like C++, the type cannot change. It
is stated at the start of the program and never changes.

• In Python, it’s less confusing to readers and writers if each variable
has ONE type. It gets a type when created; you should stick to that
type for the life of the variable in the program.

• One common style: include the type in the variable name
– Like “user_lst” or “name_str” or “hours_int”

Basic Arithmetic
• The expression on the right hand side of the

assignment operator can be an arithmetic expression.
• Some arithmetic operators in Python are:

– ** (exponentiation, “raise to the power of”)
– * (multiply), / (divide)
– +, - (add and subtract)

• These are listed in order from higher precedence to
lower precedence

• Of course you can use parentheses to make the order
you want explicit:

total = price * (tax + 100) / 100

	CS 115 A First Look at Python
	Getting Python and WingIDE
	Structure of a Python program
	Structure of a Python program
	Documentation (Comments)
	Where to use comments
	Where to use comments
	Header Comments
	Kinds of Errors
	Syntax errors
	Syntax errors
	Semantic errors
	Semantic errors
	Run-time errors
	Run-time errors
	Fixing bugs
	Variables
	Properties of a variable
	Rules for Identifiers
	Rules for Identifiers
	The Assignment operator
	The Assignment operator
	Example of assignment: swapping
	Two Solutions to swapping
	Can variable properties change?
	Basic Arithmetic

